Sadagopan Rajesh

TEST: PROPERTIES of POLYGONS

AUGUST 06, 2024

Maximum time: 20 minutes

KEM4 - Foundation Maths for Std 7,8 together @ ABIMS

Try on your own ! Don't use calculators ! Think and Answer !

Name:__

Standard:_____

I Answer the following questions accordingly !

1. In the given figure, ABCDEFGHI is a regular Nonagon, with all sides of equal length and all vertex angles of equal measure.

Then the measure of each vertex angle of ABCDEFGHI is _____ (in degrees).

- 2. The sum of all the interior angles of a concave polygon except one interior angle y° , is 170°. If the number of sides of the polygon is n, then the value of (y - n) is _____.
- 3. In triangle $\triangle ABC \ \angle A \angle B = \angle C$. Then $\triangle ABC$
 - A. must be an acute angled triangle. B. must be a right angled triangle.
 - C. must be an obtuse angled triangle. D. none of these.
- 4. In quadrilateral ABCD, $\angle A = \angle B + 20^{\circ} = \angle C 30^{\circ} = \angle D 50^{\circ}$, then the measure of $\angle D$ is _____ (in degrees).

5. Ant is initially placed at A of a pentagon and it travels one complete round along the boundary $A \to B; \quad B \to C; \quad C \to D; \quad D \to E; \quad E \to A; \quad making turns at every corner, as shown.$

The ant finally stops at A after turning towards the direction $A \to B$. The sum of the all the turn angular measures (exterior angles of pentagon) is _____ (in degrees).

6. A regular decagon ABCDEFGHIJ is inscribed in a circle whose centre is O, as shown.

The smaller measure of $\angle BOD =$

A. 72° B. 75° C. 60°

D. none of these

Sadagopan Rajesh

COMBO TEST 1

SEPTEMBER 03, 2024

Maximum time: 80 *minutes*

Basics from previous standards, Squares and Square roots, Exponents and Powers Lines and Angles, Shapes and Properties of Polygons

KEM4 - Foundation Maths for Std 7,8 together @ ABIMS

Try on your own ! Don't use calculators ! Think and Answer !

Name:__

Standard:

I Answer the following questions accordingly !

I.I Section - A : Questions on Concepts

- 1. A ray has
 - A. position but no direction
- B. direction but no position
- C. position and direction D. none of these
- 2. Which of the following is *FALSE*?

 - C. Negative square root of square of $\frac{2}{3}$ is $\frac{-2}{3}$ D. none of these
- 3. In the given figure with marked notations and angles, the measure of y is _____.

- 4. Which of the following is TRUE?
 - A. Any two angles equal in measure, are corresponding angles.
 - B. Any two linear pair angles are equal in measure.
 - C. The sum of two acute angles must be an obtuse angle.
 - D. none of these
- 5. In the multiplication process of 29×83 , the product of digits 2,3 should be assigned to the result in
 - A. its ten's place value
- B. its unit's place value
- C. its *hundred's place value* D. none of these
- 6. Which of the following statements is definitely true?
 - A. The angle with measure more than 90° is an obtuse angle.
 - B. The angle with measure less than 180° is a reflex angle.
 - C. The angle with measure less than 180° is an obtuse angle.
 - D. The angle with measure between 90° and 180° is an obtuse angle.
- 7. Here you observe a polygon with few interior angles of reflex measures.

It is

A. a concave hexagon.

B. a concave octagon.

C. a concave decagon.

D. a concave dodecagon.

Note: Hexagon, Octagon, Decagon, Dodecagon are 6, 8, 10, 12- sided polygons respectively.

8. A straight angle is divided exactly into 10 congruent parts.

Then, the measure of each angular part is _____ (in degrees).

A. 20° . B. 15° . C. 30° . D. 18° .

9. Which of the following statements is FALSE?

- A. The quadrilateral with all sides equal is defined as a square.
- B. The quadrilateral with all sides equal is defined as a rhombus.
- C. A square has all sides of equal length.
- D. A *rhombus* has all sides of equal length.

10. AB, CD, EF, GH are directions indicated in the following grid:

Use the grid for getting the right directions.

Which of the following is *true*?

A. $AB \parallel CD$ B. $AB \parallel EF$ C. $AB \parallel GH$

D. none of these

- 11. What is the meaning of the expression 3^{-3} ?
 - A. From 1, the integer 3 is repeatedly divided 3 times.
 - B. From 1, the integer -3 is repeatedly divided 3 times.
 - C. From 1, the integer 3 is repeatedly multiplied 3 times.
 - D. From 1, the integer -3 is repeatedly multiplied 3 times.

12. The value of
$$-\sqrt{(-3)^2}$$
 is
A. +3 B. -3 C. -9 D. +9

13. Lines $\overleftrightarrow{k}, \overleftrightarrow{l}, \overleftarrow{m}$ are in the same plane where lines $\overleftrightarrow{l}, \overleftarrow{m}$ are parallel, with angles as indicated.

- A. a, f are corresponding angles of equal measure.
- B. d, g are corresponding angles of equal measure.
- C. c, g are corresponding angles of equal measure.
- D. b, h are corresponding angles of equal measure.
- 14. Which of the following statements is true?
 - A. There cannot be more than two *corresponding angles*.
 - B. If angle measures are equal, then the angles must be corresponding angles.
 - C. If p, q, r are directions such that angle(p, q) = angle(p, r), then q, r must have same direction.
 - D. none of these
- 15. How many of the following statements are definitely true?
 - All rectangles are squares.
 - All rhombuses are parallelograms
 - If diagonals of a quadrilateral are perpendicular, then it is rhombus.
 - The diagonals of a parallelogram are equal.
 - The diagonals of a kite are perpendicular.
 - All diagonals of a regular pentagon are equal.
 - Only one of the interior angles of a polygon is reflex measure. The polygon must be a quadrilateral.
 - In a parallelogram, all sides are equal.

A. 3 B. 4 C. 2 D. none of these

16. What is the *half* of 4^{20} ?

A. 2^5 B. 4^5 C. 2^{39} D. none of these

17. Which of the following is TRUE?

A.
$$\underbrace{4^2 + 4^2 + 4^2 + 4^2 + \dots + 4^2 + 4^2}_{16 \ times} = 4^{32}$$
B.
$$4^{16} + 4^{16} = 4^{32}$$
C.
$$\underbrace{4^{30} + 4^{30} + 4^{30} + \dots + 4^{30} + 4^{30}}_{16 \ times} = 4^{32}$$
D. none of these

- 18. The sum of all the interior angles of a 12-sided polygon is
 - A. $12 \times 180^{\circ}$. B. $10 \times 180^{\circ}$. C. $14 \times 180^{\circ}$. D. none of these
- 19. Which of the following is *positive* ?

A.
$$\left(\frac{-1}{2}\right)^{-1}$$
 B. $\left(\frac{-1}{2}\right)^{-2}$ C. $\left(\frac{-1}{2}\right)^{-3}$ D. none of these

- 20. Two interior angles of a triangle are equal in measure. The third interior angle is greater than each of the other vertex angles by 51°. Then, the triangle
 - A. must be an acute angled triangle.
 - B. must be an obtuse angled triangle.
 - C. must be a right angled triangle.
 - D. must be an equilateral triangle.

I.II Section - B : Questions on Applications

21. Here, you observe a 9-sided regular polygon !

The measure of \underline{each} vertex angle is

A. 140° B. 135° C. 156° D. none of these

22. $x^y = 16$ where x, y are integers. How many pairs (x, y) are there satisfying the given equation?

A. 0 B. 5 C. 4 D. 2

- 23. What is the least two digit natural number that should be multiplied by 80, to get a five digit perfect square?
 - A. 125 B. 80 C. 45 D. 20
- 24. $\overleftrightarrow{l}, \overleftrightarrow{m}, \overleftrightarrow{p}, \overleftrightarrow{q}, \overleftrightarrow{a}, \overleftrightarrow{b}$ are lines on the same plane such that the angles made by lines $(\overleftrightarrow{l}, \overleftrightarrow{a}), (\overleftrightarrow{l}, \overleftrightarrow{b}), (\overleftrightarrow{l}, \overleftrightarrow{q}), (\overleftrightarrow{m}, \overleftrightarrow{b}), (\overleftrightarrow{m}, \overleftrightarrow{q}), (\overleftrightarrow{m}, \overleftrightarrow{p})$ are respectively 130°, 131°, 58°, 130°, 59° and 58°, as shown.

Which of the following is TRUE?

- A. $\overleftrightarrow{l} \parallel \overleftrightarrow{m}$ B. $\overleftrightarrow{p} \parallel \overleftrightarrow{q}$ C. $\overleftrightarrow{a} \parallel \overleftrightarrow{b}$ D. none of these
- 25. $\triangle ABC$ and $\triangle DBC$ overlap each other at $\triangle EBC$, as shown.

 $\angle BAC = 30^{\circ}; \angle ABC = 2y^{\circ}; \angle BCA = 70^{\circ}; \angle BDC = x^{\circ}; \angle ECD = 4x^{\circ}; \angle ABE = \angle EBC = y^{\circ}.$ Then, the value of x is

A. 12 B. 15 C. 9 D. 14

26. ABCD is a square. E, F are points in the same plane of the square such that

 $\triangle ACE, \triangle BDF$ are equilateral triangles, as shown.

If $\angle AOC = \angle COE = 50^{\circ}$ and $\angle BOF = \angle FOD = 60^{\circ}$, then $\angle DOE =$

A.
$$30^{\circ}$$
 B. 20° C. 40° I

D. None of these

30. Which of the following is much *closer* to $\sqrt{42}$?

A. 6.2 B. 6.4 C. 6.6 D. 6.8

I.III Section - C : Questions on Applications

31. A, B, C, D, E, F are mid points on the same plane such that $\angle ABC = 65^{\circ}, \angle BCE = 30^{\circ}$ and $AB \parallel CD \parallel EF$, as shown.

Then, measure of $\angle CEF = _$ (in degrees).

32. Here, you observe an interesting figure where directions are notated and angles are marked !

The measure of x is _____ (in degrees).

- 33. What is the simplified value of $\frac{\underbrace{81+81+81+81+....+81+81}_{81 \text{ times}}}{\underbrace{27+27+27+27+...+27+27}_{27 \text{ times}}}? -----.$
- 34. The simplified value of $\left(\frac{1}{1}\right)^0 + \left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{3}\right)^{-2} + \left(\frac{1}{4}\right)^{-3}$ is _____.
- 35. The square of 41 is _____ more than the square of 40.
- 36. The simplified value of $\left(\frac{1}{64}\right)^{-5/3}$ is _____.
- $37.\,$ A perfect square ends with digit 1. It lies between 1524 and $2024.\,$

The perfect square is _____

38. What is the smallest number that should be added to 13, to get a perfect square?

39. The value of $-\sqrt{100 + \sqrt{400 + \sqrt{1600 + 9^2}}}$ is _____

40. In the given figure, we observe a nonagon in the shape of a crown with interior angles, as shown.

Two of the unknown interior angles are equal to y° . The value of y =____.

CONVENTION- by Sadagopan Rajesh

What is *convention*?

Sometimes if you allow everyone to present / interpret in their own way, it may result in different outputs leading to confusion.

Here is an illustration:

Consider the arithmetic expression $2 + 3 \times 6$

One may evaluate the expression as follows:

Other may evaluate the expression as follows:

$2+3 \times 6$	$2+3 \times 6$	
$=$ 5 \times 6	= 2 + 18	
= 30	= 20	
Here, Addition is performed first.	Here, Multiplication is performed first.	

Multiplication is performed next. *Addition* is performed next.

The same expression with just two operations yielded different results for the simple reason, the order of operations evaluated are different.

Imagine the number of results of an expression with more number of operations !

To avoid confusion with so many results by allowing each of them to interpret to be correct in their own way, <u>a standard rule</u> is needed for everyone to follow the same way to get an unique result.

This standard rule is called convention!

This is how the humans at primitive stage arrived at a decision of operating *arithmetic expressions* with a *rule*, based on a similar experience.

Let us guess how the meeting of humans, say A,B,C... in ancient times took place in formulating the *rule of arithmetic operations*.

A: "Let us give precedence to certain arithmetic operations to get a standard evaluation."

B: "Fine. Which operations can we use for precedence?"

C: "Let multiplication or division take precedence (ahead) of addition or subtraction."

- B: "Do you mean that *multiplication* is ahead of *addition*?"
- C: "Yes! multiplication is ahead of addition, wherever it is present in the expression."
- A: *"Fine!* Since *division* is one form of *multiplication*. And *subtraction* is one form of *addition*, we may say that the rule of operations is as follows:

<u>Rule:</u>

- ✤ Multiplication is ahead of Addition.
- ✤ Multiplication is ahead of Subtraction.
- ✤ Division is ahead of Addition.
- ✤ Division is ahead of Subtraction.
- B: "What about the precedence between *multiplication* and *division; addition* and *subtraction*?
- C: "There is no specific precedence between *multiplication or division*.
 Between *multiplication or division* in the expression, whichever comes first from left to right, should be performed in that order.
 Similarly, there is no specific precedence between *addition or subtraction*.
 Between *addition or subtraction* in the expression, whichever comes first from left to right, should be performed in that order.
- A: "Fine! We may shortly say this as

Rule:<u>DM AS</u> or <u>MD AS</u> or <u>MD SA</u> or <u>DM SA</u>D stand for Division; M stand for Multiplication; A stand for Addition;S stand for Subtraction.

The underline indicates the order of evaluation.

The 1st underline operations D or M precedes the 2nd underline operations A or S."

- B: "What if someone need to add first before multiplying? Then the <u>DM</u> <u>AS</u> rule cannot force an evaluation against the requirement. What is the remedy for it?"
- C: "Excellent question! Let us take some time to work out a solution for it."

A: "Agreed!"

A,B and C worked out a while and finally got a remedy solution for the problem proposed by B.

They have decided to introduce a pair of brackets, useful to change the precedence !

Thus, <u>B DM AS</u> rule was established for a standard evaluation of expressions.

Here are few illustrations of application of <u>**B**</u> <u>**DM**</u> <u>**AS**</u> also termed as <u>**B**</u> <u>**o**</u> <u>**DM**</u> <u>**AS**</u>

$1 + 2 + 3 \times 6 + 7$	<u>B DM AS</u>	$1 + (2 + 3) \times 6 + 7$	<u>B DM AS</u>
= 1 + 2 + 18 + 7	<u>B DM AS</u>	$= 1 + 5 \times 6 + 7$	<u>B DM AS</u>
= 3 + 18 + 7	<u>B DM AS</u>	= 1 + 30 + 7	<u>B DM AS</u>
= 21 + 7	<u>B DM AS</u>	= 31 + 7	<u>B DM AS</u>
= 28		= 38	

$$1 + (2 + 3) \times (6 + 7) \stackrel{\bullet}{\underline{B}} \underline{DM} \underline{AS} = 1 + 5 \times 13 \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 1 + 65 \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 50 - (10 + 2 \times 10) \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 50 - (10 + 2 \times 10) \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 50 - (10 + 20) \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 50 - (10 + 20) \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 50 - (10 + 20) \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 50 - (10 + 20) \qquad \qquad \underline{B} \underline{DM} \underline{AS} = 50 - (30 - 30) = 20$$

Therefore, the order of operations in **<u>Bo</u> <u>DM</u> <u>AS</u> rule, is as follows:**

- **BRACKET** (*innermost to the outermost*)
- **DIVISION or MULTIPLICATION** (whichever comes first from left to right)
- **ADDITION or SUBTRACTION** (*whichever comes first from left to right*)

Note that each of the exponent forms such as 3^5 , 2^6 , etc ... is a bracket of repeated multiplication.

Evaluate the Following under the principle of <u>BO DM AS</u> step by step as illustrated.

1)
$$6 + 7 \times 3$$
 2) $(5 + 7) \times 3$ 3) $10 - 4 \times 2$ 4) $(10 - 4) \times 2$
5) $40 \div 10 \div 2$ 6) $40 \div (10 \div 2)$ 7) $40 \div 2 \times 5$ 8) $40 \div (2 \times 5)$
9) $2014 - 10 + 4$ 10) $2014 - (10 + 4)$
11) $10 \div (15 + 5) \times 8 - 4$ 12) $10 \div 15 + 5 \times 8 - 4$

Insert Pair(s) of Brackets at the appropriate places to make the equations true.

1)
$$500 - 400 - 300 - 200 = 200.$$
2) $400 - 120 \div 3 \times 4 + 6 = 3600$ 3) $2 + 4 \times 3 - 5 \div 6 - 7 = 10.$ 4) $1 + 2 \div 3 \times 4 + 5 \div 6 \times 7 = \frac{91}{12}.$

Remove unnecessary Pair(s) of Brackets in each of the given expressions, if any.

1)
$$1 + ((2 + 30) - (5 + 7) + (6 \times 8) - (20 \div 4))$$

2) $(1+2) \times 3 - (4 \div \{5 + (6 \times 7 - 8) + [9 \times 10]\})$
3) $((((((((1 \div 2) \div 3) \div 4) \div 5) \div 6) \div 7) \div 8) \div 9))$
4) $((1+2) - (3-4) + (5 \times 6)) \div (7+8) + 9$

Insert the Brackets at the appropriate places to make the expressions attain maximum value.

1) $1 + 2 \times 3 - 4 \div 5 + 6 \times 7$ 2) $200 \div 4 \times 10 + 2 - 5 \times 6 - 7$ 3) $32 - 16 \div 8 - 4 \div 2 - 1$ 4) $1 + 2 \times 3 - 4 \times 5 + 6 - 7 \div 8$

Replace *s by proper arithmetic operators to make the equations true.

1)
$$20 * (4 - 2) \times 2 * 5 = 15.$$
2) $(80 * (12 * 3) + 4) * 6 = 144.$ 3) $10 * (8 * (6 * (4 * 2))) = 12.$ 4) $50 * (25 * (10 * (5 * 1))) = 10.$

*Note: Each * may represent a different arithmetic operator.*

ALL THE BEST

PROBLEMS & SOLUTIONS - by Sadagopan Rajesh

Evaluate the Following under the principle of <u>BO DM AS</u> step by step as illustrated.

1) $6 + 7 \times 3$ 2) $(5 + 7) \times 3$ 3) $10 - 4 \times 2$ 4) $(10 - 4) \times 2$ 5) $40 \div 10 \div 2$ 6) $40 \div (10 \div 2)$ 7) $40 \div 2 \times 5$ 8) $40 \div (2 \times 5)$ 9) 2014 - 10 + 4 10) 2014 - (10 + 4)11) $10 \div (15 + 5) \times 8 - 4$ 12) $10 \div 15 + 5 \times 8 - 4$

Solutions:

<u>:</u>

$$6 + 7 \times 3 \qquad \underline{B \ DM \ AS} \qquad (5 + 7) \times 3 \qquad \underline{B \ DM \ AS} \\ = 6 + 21 \qquad \underline{B \ DM \ AS} \qquad = 12 \times 3 \qquad \underline{B \ DM \ AS} \\ = 27 \qquad = 36$$

$$10 - 4 \times 2 \qquad \underline{B} \underline{DM} \underline{AS} \qquad (10 - 4) \times 2 \qquad \underline{B} \underline{DM} \underline{AS}$$
$$= 10 - 8 \qquad \underline{B} \underline{DM} \underline{AS} \qquad = 6 \times 2 \qquad \underline{B} \underline{DM} \underline{AS}$$
$$= 2 \qquad = 12$$

1

$$40 \div 10 \div 2 \quad \underline{B \ \underline{DM} \ \underline{AS}} = 4 \div 2 \qquad \underline{B \ \underline{DM} \ \underline{AS}} = 40 \div 5 \qquad \underline{B \ \underline{DM} \ \underline{AS}} = 2 = 8$$

$$40 \div 2 \times 5 \qquad \underline{B \ \underline{DM} \ \underline{AS}} \qquad 40 \div (2 \times 5) \qquad \underline{B \ \underline{DM} \ \underline{AS}} \qquad = 20 \times 5 \qquad \underline{B \ \underline{DM} \ \underline{AS}} \qquad = 40 \div 10 \qquad \underline{B \ \underline{DM} \ \underline{AS}} \qquad = 4$$

$$2014 - 10 + 4 \qquad \underline{B} \ \underline{DM} \ \underline{AS} = 2004 + 4 \qquad \underline{B} \ \underline{DM} \ \underline{AS} = 2014 - (10 + 4) \qquad \underline{B} \ \underline{DM} \ \underline{AS} = 2014 - 14 \qquad \underline{B} \ \underline{DM} \ \underline{AS} = 2008 = 2000$$

Insert Pair(s) of Brackets at the appropriate places to make the equations true.

1) 500 - 400 - 300 - 200 = 200.2) $400 - 120 \div 3 \times 4 + 6 = 3600$ 3) $2 + 4 \times 3 - 5 \div 6 - 7 = 10.$ 4) $1 + 2 \div 3 \times 4 + 5 \div 6 \times 7 = \frac{91}{12}.$

Solutions:
$$500 - (400 - (300 - 200)) = 200.$$

 $500 - (400 - 300) - 200 = 200.$
 $(400 - 120 \div 3) \times (4 + 6) = 3600.$
 $2 + 4 \times (3 - 5) \div (6 - 7) = 10.$
 $2 + 4 \times [(3 - 5) \div (6 - 7)] = 10.$
 $((1 + 2) \div (3 \times 4) + 5 \div 6) \times 7 = \frac{91}{12}.$

Remove unnecessary Pair(s) of Brackets in each of the given expressions, if any.

1)
$$1 + ((2 + 30) - (5 + 7) + (6 \times 8) - (20 \div 4))$$

2) $(1+2) \times 3 - (4 \div \{5 + (6 \times 7 - 8) + [9 \times 10]\})$
3) $((((((((1 \div 2) \div 3) \div 4) \div 5) \div 6) \div 7) \div 8) \div 9))$
4) $((1+2) - (3-4) + (5 \times 6)) \div (7+8) + 9$

Solutions: $1 + 2 + 30 - (5 + 7) + 6 \times 8 - 20 \div 4$

$$(1+2)\times 3-4 \div \{5+6\times 7-8+9\times 10\}$$

1÷2÷3÷4÷5÷6÷7÷8÷9
(1+2-(3-4)+5×6)÷(7+8)+9

Insert the Brackets at the appropriate places to make the expressions attain maximum value.

1) $1 + 2 \times 3 - 4 \div 5 + 6 \times 7$ 2) $200 \div 4 \times 10 + 2 - 5 \times 6 - 7$ 3) $32 - 16 \div 8 - 4 \div 2 - 1$ 4) $1 + 2 \times 3 - 4 \times 5 + 6 - 7 \div 8$ Solutions: $(1+2) \times (3-4 \div 5+6) \times 7$ $(200 \div 4 \times (10+2) - 5) \times 6 - 7$ $32 - (16 \div 8 - 4 \div 2 - 1)$ $((1+2) \times 3 - 4) \times (5 + 6 - 7 \div 8)$

Replace *s by proper arithmetic operators to make the equations true.

1) $20 * (4 - 2) \times 2 * 5 = 15.$ 2) (80 * (12 * 3) + 4) * 6 = 144.3) 10 * (8 * (6 * (4 * 2))) = 12. 4) 50 * (25 * (10 * (5 * 1))) = 10.

Note: Each * may represent a different arithmetic operator.

Solutions: $20 \div (4 - 2) \times 2 - 5 = 15.$ $(80 \div (12 \div 3) + 4) \times 6 = 144.$ $10 + (8 \div (6 - (4 - 2))) = 12.$ $10 + (8 \div (6 - (4 \div 2))) = 12.$ $50 \div (25 \div (10 - (5 \div 1))) = 10.$

ALL THE BEST